Counting Off

Math Domain		
✓ Number/Quantity	Shape/Space	Function/Pattern
Chance/Data	Arrangement	
Math Actions (possible weights: 0 th	rough 4)	
2 Modeling/Formulating	1 Manipulating/Transforming	
3 Inferring/Drawing Conclusions	3 Communicating	
Math Big Ideas		
Scale	Reference Frame	Representation
Continuity	Boundedness	Invariance/Symmetry
Equivalence	✓ General/Particular	Contradiction
Use of Limits	Approximation	Other

The intent of this task is to have students demonstrate their ability to design counting schemes and to recognize the upper limits of a particular counting situation.

- 1. The number of children could be any odd number less than 35.
- **2.** The number of children must be one more than a multiple of three (1,4,7,10,13.....34). When this finding is combined with the previous result, the only possible numbers are 1,7,13,19,25 and 31.
- **3.** This tells us that the number of children must end in a 3 or an 8. When this finding is combined with the results of **1** and **2**, it eliminates all the numbers ending in 8 (answer must be odd) and all the numbers less than 35 ending in 3 except 13 (one more than a multiple of 3).
- **4.** Since we are dealing with the same group of children in each question, the number of children in the group must appear in all the listed sets of possibilities; the only number that meets this requirement is 13.

	partial level	full level
Modeling/ Formulating (weight: 2)	Design a correct, organized counting scheme for some, but not all of the questions	Design a correct, organized counting scheme for each question.
Transforming/ Manipulating (weight: 1)	Calculate some responses correctly.	Calculate all responses correctly.
Inferring/ Drawing Conclusions (weight: 3)	Reach correct conclusions and recognize the upper limit while designing the counting scheme for each individual question.	Combine the results of 3 to deduce the correct number of children in 4 .
Communicating (weight: 3)	Write a letter that conveys the correct numerical answers for 1 , 2 and 3 .	Write a letter which provides some explanation of the process leading to the final number of children in 4 .