Math Domain				
✓ Number/Quantity	✓ Shape/Space	Function/Pattern		
Chance/Data	Arrangement			
Math Actions (possible weights: 0 through 4)				
1 Modeling/Formulating	2 Manipulating/Transforming			
2 Inferring/Drawing Conclusions	2 Communicating			
Math Big Ideas				
✓ Scale	Reference Frame	Representation		
Continuity	Boundedness	Invariance/Symmetry		
Equivalence	General/Particular	Contradiction		
Use of Limits	Approximation	Other		

- 1. a. At *Gourmet Grocery*, one can of corn costs 3/7 of a dollar, or about \$0.43. At *Shop and Run*, one can costs 2/5 of a dollar, or about \$0.40. Thus, *Shop and Run* has the lower price.
 - **b.** Any fraction between 2/5 and 3/7 can be used to produce an answer. One good choice is 5/12, which gives the answer "12 for \$5."

Here is one way to explain why this price is in between: if you were to buy 7 cans for \$3 at one store and then 5 cans for \$2 at the other store, in total you would be buying 12 cans for \$5, and the average price per can would have to be in between two stores' prices.

Another way to think about this is to choose a number of cans halfway between 5 and 7, namely 6, and a price halfway between \$2 and \$3, or \$2.50. But 6 cans for \$2.50 does not satisfy the whole number requirements. However, doubling this ratio leads to 12 cans for \$5.00.

Still another possibility is to simply multiply .41 or .42, the "inbetween" unit prices, by 100, resulting in 100 cans for \$41 or \$42.

2. The area of the pan in the recipe is (6 in.)·(9 in.) = 54 sq. in., while the area of the commercial-size pan is (18 in.)·(24 in.) = 432 sq. in. Thus the area of the commercial-size pan is 8 times the area of the recipe pan.

This ratio of areas can also be seen without actually computing the areas. Note that 18 in. = $2 \cdot (9 \text{ in.})$, while 24 in. = $4 \cdot (6 \text{ in.})$. An enlargement by a factor of 2 in one dimension and a factor of 4 in the other dimension would change the area by a factor of 8.

Now, all the quantities in the recipe must be multiplied by 8:

4 cups butter
12 ounces unsweetened chocolate
8 cups sugar
16 eggs
8 teaspoons vanilla
6 cups all-purpose flour
8/3 cups chopped nuts

	partial level (1 or 2)	full level (3)
Modeling/ Formulating (weight: 1)		Student is able to formulate a way to determine the ratio of areas without actually computing each one.
Transforming/ Manipulating (weight: 2)	There are some computational errors in questions 1 or 2.	All calculations are consistent and correct.
Inferring/ Drawing Conclusions (weight: 2)	Solutions display a fragile sense of proportional reasoning.	All solutions are reasonable, and make use of appropriate ratios.
Communicating (weight: 2)	The explanation for questions 1 a and/or l b are vague or incomplete.	Explanations are clear, complete, and utilize appropriate vocabulary.